Power Analyzer GPA 1xx - Konfiguration & Berechnung

Dokumentation zur Konfiguration und Berechnung der Leistungsanalyse

Konfiguration

Polpaare

Um eine sinnvolle Berechnung zu ermöglichen, muss die Anzahl der Polpaare konfiguriert werden.

Bei Motoren mit N Polpaaren entsprechen N Sinuszyklen einer tatsächlichen Motordrehung.

Ermittlung des Rotationspulses

Die Ermittlung des Rotationspulses "RotPulse" kann durch die Konfiguration wie folgt definiert werden (Erweiterte Einstellungen am PowerAnalyzer Datenpuffer):

  • Konstante Umdrehungsgeschwindigkeit: Konstant alle x Millisekunden
  • Umdrehungsdetektion durch digitalen Eingang: Durch einen digitalen Puls auf einem der Frequenzeingänge. Hier kann auch angegeben werden, wie viele dieser Pulse einer kompletten Rotation des Motors entsprechen.
  • Umdrehungsdetektion durch Spannung: Hierfür analysieren wir die Phasenspannungen zur Ermittlung des Rotationswinkels. Diese Methode geht nur vernünftig bei sinusförmigen Phasenspannungen, wie sie im Schleppbetrieb vorliegen.
  • Umdrehungsdetektion durch Strom: Hierfür analysieren wir die Phasenströme zur Ermittlung des Rotationswinkels. Diese Methode geht nur vernünftig bei fließendem Strom, also beim Betrieb unter Last.

ℹ️Die Methoden „Umdrehungsdetektion durch Spannung“ und „Umdrehungsdetektion durch Strom“ sind von Natur aus schlechter als die Vorgabe eines externen Rotationssignals. Daher sollte auf diese Methoden nur dann zurückgegriffen werden, wenn keine externe Rotationsinformation verfügbar ist.

💡Wir empfehlen zur Ermittlung des Rotationspulses die Umdrehungsdetektion durch einen digitalen Eingang zu benutzen.

Parameter zur Umdrehungsdetektion durch digitalen Eingang

Zur Ermittlung des Rotationspulses mithilfe eines digitalen Eingangs müssen folgende Parameter konfiguriert werden:

  • Digitale Triggervariable: Dieser Parameter definiert die digitale Eingangsvariable auf der das Frequenz-/Pulssignal gemessen wird.
  • Pulse pro Umdrehung: Dieser Parameter definiert die Anzahl der Pulse pro ganze Umdrehung des Motors.

Parameter zur Umdrehungsdetektion durch Spannung/Strom

Im Regelfall sind die Phasenspannungen und Phasenströme im realen Motorbetrieb sehr gestört (beispielsweise durch die Gepulste PWM-Ansteuerung der Phasenspannungen).
Daher ist es notwendig, weitere Parameter für die Winkelberechnung aus diesen gestörten Signalverläufen anzugeben, die dazu dienen, die Spannungen und Ströme nur dann auszuwerten, wenn sie kurzfristig „stabil stehen“, also kein Spike und kein Pulsstufe vorliegt.

Diese Puls/Spike-Unterdrückung wird wie folgt parametriert:

  • Spannungsschwelle Vth:  Wenn sich mindestens eine der Phasenspannungen vom letzten Wert S[Chu](n-1) zum aktuellen Wert S[chu](n)] um mehr als Vth verändert hat, wird die Winkelberechnung unterdrückt.
  • Stromschwelle Ith: Wenn sich mindestens einer der Phasenströme vom letzten Wert S[Chi](n-1) zum aktuellen Wert S[chi](n)] um mehr als Ith verändert hat, wird die Winkelberechnung unterdrückt.

    ℹ️Bei Umdrehungsdetektion durch Spannung bzw. Strom:
    Sowohl die Spannungsschwelle für alle Phasenspannungen als auch die Stromschwelle für alle Phasenströme muss unterschritten sein damit die Winkelberechnung durchgeführt wird.
    Aus allen Phasenspannungen resultierende Gesamtspannungsvektor ermittelt. Sein Winkel ist der vermutete Rotationwinkel des Motors.
    Aus allen Phasenströmen wird der Gesamtstromvektor ermittelt.
  • Minimale Spannungsvektorlänge/Stromvektorlänge:
    Nur wenn der ermittelte Gesamtspannungsvektor/Gesamtstromvektor die Mindestlänge überschreitet, wird der ermittelte Winkel als vermuteter Rotationswinkel des Motors herangezogen.

Auch wenn diese Parameter alle sinnvoll eingestellt sind, kann es im realen Motorbetrieb trotzdem zu Störungen der Winkelerkennung kommen. Hierfür gibt es weitere Parameter zum Eingrenzen der Verwendung der Winkelberechnung:

  • Schwelle Rotationswinkel (Angabe in Anzahl von Samples):
    Nur wenn der berechnete Rotationswinkel für mindestens diese Anzahl an Samples im gleichen Rotationssegment liegt (also keine Spikes aufgetreten sind), wird der Winkel als gültig angesehen. Ein Segment entspricht 30 Winkelgrad des Sinusverlaufs.
  • Rotation Qualitätssegmente (Angabe in Anzahl von 30 Grad Segmenten):
    Der Parameter gibt an, wie viele der insgesamt zwölf 30° Segmente durchlaufen werden müssen, bevor ein Rotationspuls ausgegeben werden kann.
    Nur wenn der berechnete Rotationswinkel seit dem letzten RotPulse diese Anzahl an 30° Segmenten durchlaufen hat, wird der Winkel als gültig angesehen. Im Idealfall durchläuft der erkannte Winkel während der Rotation alle 12 Segmente (12 * 30° = 360°). 
    In der Realität werden bei schnellen Beschleunigungen einige Segmente übersprungen.
  • Rotations Qualitätsunterdrückung: (Angabe in Anzahl von 30 Grad Segmenten):
    Der Parameter gibt an, wie viele der 12 Segmente 30° Segmente übersprungen werden dürfen. Segmentausreißer in der Winkelerkennung, die mehr Segmente überspringen als die angegebene Anzahl, werden unterdrückt.
    Kleinere Werte limitieren die maximale Beschleunigung des Motors, die noch fehlerfrei erkannt wird. Bei großer Geschwindigkeitsänderung können und dürfen einige Winkelsegmente regulär übersprungen werden.
  • Schwelle Trigger Winkel (Angabe in Winkelgrad)

    Wenn die Winkelberechnung alle vorherigen Parameter erfüllt, dann ist der berechnete Winkel für die Erkennungen eines Rotationspulses qualifiziert, so dass der Rotationspuls genau dann ausgelöst wird, wenn der berechnete Winkel in Drehrichtung die Schwelle des Triggerwinkels überschreitet.
    Als Standardwert ist 240 zu empfehlen.

Berechnung

Definitionen

  • Alle Kanäle laufen mit einer gemeinsamen Abtastrate “F”.
  • Die Anzahl der Phasen nennen wir "NumPhases“.
  • Ein externer angelegter oder ein intern berechneter Rotationspuls "RotPulse” kommt exakt alle 360° der Motor-Rotation vor und markiert uns das erste Sample jeder neuen Motordrehung.
  • Die Anzahl der Samples pro Kanal in der zurückliegenden Rotation bezeichnen wir als “RotCount”.
  • Alle Samples der zurückliegenden Rotation bezeichnen wir mit “S[ch](n)” wobei ch=Kanalnummer und n=0 ... RotCount-1.
    • Die Kanäle der Phasenspannungen bezeichnen wir mit der Kanalnummer "chu": S[chu](n)
    • Die Kanäle der Phasenströme bezeichnen wir mit der Kanalnummer "chi": S[chi](n)
  • Die Ergebnisse der Phasen bezeichnen wir mit dem Index "p":
    • Wirkleistung P[p],
    • Scheinleistung S[p]
    • usw.
  • Die Anzahl der abgeschlossenen Rotationen seit Start bezeichnen wir als "RotNum". Sie dient nur der Information (und der Zuordnung der Ergebnisse). 

Ermittlung der Kennzahlen

Mit jedem RotPulse berechnen wir aus allen S[ch](n) die folgenden Werte:

  • für alle Phasen p (mit j = 0 ... RotCount - 1):
    • Spannung RMS: Urms[p] = √{ ∑ [ S[chu] (j) * S[chu] (j) ]} / RotCount
    • Strom RMS: Irms[p] = √{ ∑[ S[chi] (j) * S[chi] (j) ]} / RotCount
    • Wirkleistung: P[p] = ∑{ S[chu] (j) * S[chi] (j) } / RotCount
    • Scheinleistung: S[p] = Urms[p] * Irms[p]
    • Blindleistung: Q[p] = √(  S[p] * S[p] - P[p] * P[p] )
    • Leistungsfaktor: cos φ[p] = 100% * P[p] / S[p]
  • FFT über alle S[chu](n) bzw. S[chi](n) (mit k = 2 ... RotCount / 2):
    • THDu = 100% * √{ ∑[ FFT[chu] (k) * FFT[chu] (k)]} / FFT[chu] (1) 
    • THDi = 100% * √{ ∑[ FFT[chi] (k) * FFT[chi] (k)]} / FFT[chu] (1)
  • für das Gesamtsystem (mit p = 1 ... NumPhases):
    • Wirkleistung: Ptot = ∑( P[p] )
    • Blindleistung: Qtot = ∑( Q[p] )
    • Scheinleistung: Stot = √( Ptot2 * Qtot2)
    • Leistungsfaktor: cos φtot = 100% * Ptot / Stot
    • Abgeschlossene Rotationen: RotNum = RotNum +1
    • Rotationen pro Minute: RPM = F / RotCount * 60 

Optional lesen wir im Moment des Rotationspulses die aktuellen Werte der jeweils optional angebundenen Signaleingänge "Drehmoment" und "Drehzahl (RPM)" aus und berechnen daraus die mechanische Leistung sowie die Effizienz des Motors:

  • Mechanische Leistung: Pmech = 2π * Drehzahl / 60 * Drehmoment
  • Effizienz: Eta = Pmech / Ptot